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1. Introduction

Cassandra is a distributed data-store designed at Facebook Lakshman and Malik (2010) to
support high concurrency at large workloads, it was designed to run on cheap commodity
hardware and handle high write throughput while not sacrificing read efficiency. It offers
high availability, replication and a flexible NoSQL schema.

Every Cassandra datacenter organizes its nodes in a cluster Foundation (2016), these
nodes are responsible for storing data. The nodes communicate with each other using gossip
protocol to support fault tolerance. The nodes of a cluster are arranged in a distributed
hash ring.

Data is replicated many times a ring. Every node writes the incoming data to the in-
memory memtables in append-only fashion, when the size of the memtable reaches thresh-
old, it is flushed to the immutable SSTables. For efficient lookup Cassandra uses a proba-
bilistic data structure called bloom-filters.

The Bloom filter represents the values in the SSTables. It is a quick way to check weather
a key exists in the SSTable or not. It is much faster than linear lookup or binary search,
and is much more practical at scale at which Cassandra operates. But as with everything
else there is no free lunch, depending on the configuration of the filter it is possible to get
false positives when the size of data increases.

Because Bloom filter uses non-cryptographic hash functions to represent the data, it is
possible to have collisions and therefore it can say that an entry is in the SSTable even
when its not there, however its impossible to get false negatives.

The bloom filter has many applications Broder et al. (2002) in networking and the reason
for its popularity is space efficiency and quick membership queries. There are variations of
Bloom filter for different requirements like scalability Paulo Sérgio Almeida and Hutchison
(2007) or support for deletions Varghese (2006). However there is better way to implement
lookups for large databases, without compromising on space complexity or rate of false
positives via cuckoo filters. It hasn’t been used much outside academia but has been
proven to work better than bloom filter and its variants Fan et al. (2014).
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2. Objective

The cuckoo filter is also a probabilistic data structure that supports set membership testing
like bloom filter cuckoo filter improves upon the bloom filter in that it offers deletion, limited
counting, and a bounded false positive probability and has a similar space complexity.

Moreover, the cuckoo filter guarantees low false-positive rates even when 95 percent of
space has been utilized. The filters store fingerprints of the values being inserted thus being
memory efficient. It does that by using cuckoo hashes, it is a technique for implementing
a hash table. As opposed to most other hash tables, it achieves constant time worst-case
complexity for lookups.

Cuckoo hashes maintains two lookup tables or “buckets” that assigned to two different
hash functions, therefore only two lookups are required, which makes its worst-case time
complexity O(1)

2.1 Expected Results

A node in cassandra has downtime when its in the process of flusing the in-memory
memtable to the disk, having too many flushes can result in low availability. Since it is
now possible to have larger data without compromising false positive rates We can have
less frequent memtable flushes, or have larger memtables.

Algorithm 1 The lookup process of a cuckoo filter

function Lookup(x)
f = fingerprint(x)
i1 = hash(x)
i1 = i2 ⊕ hash(x)
if f in bucket[i1] or bucket[i2] then

return true
return false

By using cuckoo filters we can have better lookup time despite having large SSTables.
And at that scale it might even be possible to get constant amortized time which is a
significant improvement over bloom filters

2.2 Implementation

The project will be done in two phase the first phase would be the implementation of
cuckoo filters for Cassandra open source project. At present Cassandra stores its bloom
filters in-memory, and gives users the option to set the desired false positive rates, the user
can choose to have lower false positives at the expense of memory DataStax (2020b).

The second phase would be to setup the test-bed and analyze the performance on three
different compaction strategies DataStax (2020a). Compaction is a technique that Cassan-
dra uses to merge SSTables in the background. Depending on the configuration being used,
it is triggered to eliminate duplicates, save memory. The bloom filters are reset whenever
this happens.
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